In the first FP&A Board Connect, Takeshi Murakami, Business Manager to CEO/President at Microsoft Japan, a speaker...
At its core, the phrase "data-driven" means acting based on what the data tells you. Organisations are increasingly adopting data-driven approaches to decision-making. This is natural, given the amount of data we now have on hand. To match the demand, software providers are touting products that claim to facilitate this metric-centric decision-making. All-in-all, data-driven is now perceived as the right way to do business. If you're doing "data-driven decision-making", you're doing it right.
But are you really?
As we let the data determine more and more actions, we must keep in mind that "data-driven" doesn't necessarily mean "data accurate." Nor does it mean "data-efficient" or "data masterful."
Indeed, I've seen data-driven strategies that run the gamut. Some were good, some were bad, and others were just ugly.
This article will look into how to set up a good data-driven strategy and how to choose the best Predictive Analytics solution.
Data-driven strategies: The good, the bad and the ugly
- The good: This kind of data-driven strategy focuses on sourcing more financial and operational data and analysing it quickly. That’s the magic that happens when you can access a real data hub that incorporates financial data but also granular operational data, which are the firestarter of the revenue, cost, and cash generation.
- The bad: This kind of data-driven strategy is incomplete as it lacks vital data sources. It results in inaccurate data that becomes dangerous when used to craft strategies and make decisions. It generally happens when your financial system can sync and merge data from an old, siloed approach, but you still can't track relevant data or data with proper granularity. E.g., Retailers who can't track hourly or day-of sales miss critical information that would inform cost-savings measures, like shift scheduling or sales generation, like in-store promotion.
- The ugly: This kind of data-driven strategy can't get off the ground because its data is uninterpretable. Even if it could, finance would have no way to extract any value from its findings. If your FP&A system can tell you, for example, that you're going to sell more ice cream if the number of people in the city divided by the average salary of bakers in London is greater than the estimated CPI in three years. What do you do next? How do you derive a selling strategy from this accurate yet business-agnostic finding that's pure math? Cool technology, but it lacks any actionable insight.
To help you determine where you land on the data-driven decision-making spectrum, I've made this handy chart to support you in your next steps.
How do you switch tracks to a good data-driven strategy?
I believe the best way to look at this is to understand the path towards an ideal data-driven strategy boosted by Predictive Analytics.
The crème de la crème of data-driven strategies is Predictive Analytics — specifically Predictive Analytics with explainable predictions. (I'll explain this concept in a bit.) Predictive Analytics produces precise projections to help shape decisions, guide course corrections, and redirect resources to productive activities.
In other words, a conscious and consistent journey towards Predictive Analytics will put you on the track towards — not just good — but exceptional data-driven decision-making.
When executed correctly, Predictive Analytics has the power to leverage all kinds of data and confer predictive power on every financial process.
How to choose the best Predictive Analytics solution to be successful?
1. Understand the three essential pillars of Predictive Analytics
Previously, companies used external consultants and data scientists to build and utilise predictive functionality. The burdensome, costly nature of this approach still lingers in finance's imagination. Yet, times have changed. Although predictive technology has matured beyond recognition, there are several things that a Predictive Analytics solution must do:
- Unify data: Predictive platforms must facilitate a centralised approach to data management.
- Connect operational and financial data: By understanding the connection and interrelations between financial results and operational actions, you can better scrutinise and adjust operational strategy towards a scenario that would produce optimal financial results.
- Be real-time: Access to real-time data is critical to producing precise predictions in times of uncertainty. In-memory computing and a powerful data engine are the two technologies that ensure real-time speed so you can gauge the impacts of unexpected market events or twists and turns in the economy and quickly determine a viable strategic response.
2. Use explainable predictions
Predictions are only half the battle when it comes to making data-driven decisions. The other half? Understanding what is driving your performance and impacting most of the predicted outcomes.
For example, it’s helpful to know a product line’s predicted revenue. But it’s more beneficial to understand that your marketing campaigns and discount policy are the drivers of that revenue. This way, you could invest more in what's working and less in what's not and apply your insights to neighbouring initiatives.
3. Use a suitable Predictive Analytics software
In my eyes, leveraging a predictive solution without explainable predictions is like providing a cart without a horse. It lacks a driving force. That’s why it’s essential to recognise the main two types of Predictive Analytics software, as follows:
- Black box software: Black box software that gives you predictions but provides no rhyme or reason. You're expected to trust the machine's predictions without understanding the correlations it's made to come to its conclusion.
- Glass box approach software: This software produces the predictions and spots light on the business drivers responsible for them. This supports your savvy data-driven decision-making process because you can take those drivers, change the strategy, and simulate or reshape the future towards a more fruitful outcome.
4. Don’t treat Predictive Analytics as a technology. Treat it as a solution
I've seen many organisations fall victim to shiny and new Predictive Analytics solutions that make data-driven decision-making more of an IT chore than a finance weapon. I suggest that, when you're vetting a Predictive Analytics solution or building your requirements for a data-driven strategy, be wary of this Artificial Intelligence and Machine Learning (AI/ML) technology red flags:
- Highly tech but challenging to use
- AI/ML not integrated with FP&A tools: This leads to audibility problems and time-consuming manual processes.
- FP&A tools not integrated with ERP: Usually, ERP data models aren't meant for analysis. They're meant for transactional processes. It takes a lot of work to unearth ERP data beneficial for planning. Also, in the ERP world, data processes are transactional and fluid, impacting snapshots' data quality.
5. Understand that you can start where you are today
Crawl, walk, run! Don't let perfection be the enemy of progress. Even as an end goal, Predictive Analytics becomes a baseline for improved automation, data synthesis, and the drive to underlie more predictive technologies under more processes — so it's ok to start lean and slow with what you have.
The point is: if you have even minimal data requirements and implement Predictive Analytics software that includes explainable predictions, you'll still benefit from understanding performance drivers and automation, even if the predictions aren't 100% spot on.
Closing thoughts
We need to remember that our decisions are only as good as our data, and our data are only as good as the technology we use to understand and act on them.
When executed according to the framework and principles I've laid out for you here, the journey to predictive itself will result in data-driven decision-making based on data-accurate, data-efficient, and data-masterful financial processes.
To watch an FP&A Trends webinar on managing uncertainty with FP&A Predictive Analytics, please check out this link.