Skip to main content
Home
The Online Resource for Modern FP&A Professionals
Please register to receive the latest FP&A news, updates and tips Login

Main menu

  • Home
  • FP&A Insights
    • FP&A Trends Digest
    • FP&A Trends Research
    • FP&A Trends Insight Paper
    • FP&A Trends Survey
    • Short Videos
    • Our Contributors
  • FP&A Events
    • International FP&A Board
    • FP&A Trends Webinars
    • Digital FP&A Circles
  • AI/ML Committee
    • Introduction
    • Members
    • Resources
    • Meetings
  • FP&A Tools
    • FP&A Trends Maturity Model
  • About Us
    • Company Policy
    • Privacy Policy
    • Editorial Guidelines
    • Our Ambassadors
    • Our Sponsors & Partners
    • Contact Us
image
Forecasting: Should the Mean APE Rule the Accuracy Planet?
February 27, 2018

By Hans Levenbach, PhD, CPDF author of Change & Chance Embraced

FP&A Tags
Modelling and Forecasting
Forecasting Quality
Financial Planning and Analysis

Planners and managers in supply chain organizations are accustomed to using the Mean Absolute Percentage Error (MAPE) as their best (and sometimes only) answer to measuring forecast accuracy. It is so ubiquitous that it is hardly questioned. I do not even find a consensus on the definition of forecast error in supply chain organizations around the world among practitioners who participate in the forecasting workshops. For most, Actual (A) minus Forecast (F) is the forecast error, for others just the opposite.

Among practitioners, it is a jungle out there trying to understand the role of the APEs in the measurement of forecast accuracy. Forecast accuracy is commonly measured and reported by just the Mean Absolute Percentage Error (MAPE), which is the same no matter which definition of forecast error one uses.

Bias is the other component of accuracy, but is not consistently defined, either. For some, Actual (A) minus Forecast (F) is the forecast error, for others just the opposite. If bias is the difference, what should the sign be of a reported underforecast or overforecast? Who is right and why? 

Outliers in forecast errors and other sources of unusual data values should never be ignored in the accuracy measurement process. For a measurement of bias, for example, the calculation of the mean forecast error ME (the arithmetic mean of Actual (A) minus Forecast (F)) will drive the estimate towards the outlier. An otherwise unbiased pattern of performance can be distorted by just a single unusual value. 

When an outlier-resistant measure is close to the conventional measure, you should report the conventional measure. If not, the analyst should check out the APEs for anything that appears unusual. Then work with domain experts to find a credible rationale (stockouts, weather, strikes, etc.)

Are There More Reliable Measures Than the MAPE?  

The M-estimation method, introduced in Chapter 2 of my new book can be used to automatically reduce the effect of outliers by appropriately down- weighting values ‘far away’ from a typical MAPE. The method is based on an estimator that makes repeated use of the underlying data in an iterative procedure. In the case of the MAPE, a family of robust estimators, called M-estimators, is obtained by minimizing a specified function of the absolute percentage errors (APE). Alternate forms of the function produce the various M-estimators. Generally, the estimates are computed by iterated weighted least squares.

It is worth noting that the Bisquare-weighting scheme is more severe than the Huber weighting scheme. In the bisquare scheme, all data for which | ei | ≤ Ks will have a weight less than 1. Data having weights greater than 0.9 are not considered extreme. Data with weights less than 0.5 are regarded as extreme, and data with zero weight are, of course, ignored. To counteract the impact of outliers, the bisquare estimator gives zero weight to data whose forecast errors are quite far from zero.  

What we need, for best practices, are robust/resistant procedures that are resistant to outlying values and robust against non-normal characteristics in the data distribution, so that they give rise to estimates that are more reliable and credible than those based on normality assumptions.

Taking a data-driven approach with APE data to measure precision, we can create more useful TAPE (Typical APE) measures. However, we recommend that you start with the Median APE ( MdAPE) for the first iteration. Then use the Huber scheme for the next iteration and finish with one or two more iterations of the Bisquare scheme. The Huber-Bisquare-Bisquare Typical APE (HBB TAPE) measure has worked quite well for me in practice and can be readily automated even in a spreadsheet. This is worth testing with your own data to convince yourself whether a Mean APE should remain King of the accuracy jungle!!

Details may be found in Chapter 4 of Change & Chance Embraced: Achieving Agility with Demand Forecasting in the Supply Chain.

The full text is available for registered users. Please register to view the rest of the article.
  • Log In
  • or
  • Register

Related articles

FP&A: Learning to Love Risk
September 19, 2017

If measurement – or the lack of it – is the biggest weakness in most forecasting...

Read more
Playing Golf in the Dark
September 19, 2017

About the only thing that everyone seemed to agree on in my old company was that...

Read more
The 11 Commandments of Supreme Forecasting
August 20, 2016

The gold rush is a defining part of Silicon Valley. The gold of today is data...

Read more
+

Subscribe to
FP&A Trends Digest

We will regularly update you on the latest trends and developments in FP&A. Take the opportunity to have articles written by finance thought leaders delivered directly to your inbox; watch compelling webinars; connect with like-minded professionals; and become a part of our global community.

Create new account

image

Event Calendar

Pagination

  • Previous
  • May 2025
  • Next
Su Mo Tu We Th Fr Sa
27
28
29
30
1
2
3
 
 
 
 
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Transforming FP&A Together: Human & AI Synergy
 
18
19
20
21
22
23
24
Moving from FP&A to Extended Planning and Analysis (xP&A)
 
Five Critical Roles for Building a World-Class FP&A Team
 
25
26
27
28
29
30
31
FP&A Business Partnering and AI: A New Era
 
All events for the year

Future Meetings

The Face-to-Face Amsterdam FP&A Board
The Face-to-Face Amsterdam FP&A Board Transforming FP&A Together: Human & AI Synergy

May 15, 2025

The Face-to-Face Milan FP&A Board
The Face-to-Face Milan FP&A Board Moving from FP&A to Extended Planning and Analysis (xP&A)

May 20, 2025

The Face-to-Face Frankfurt FP&A Board
The Face-to-Face Frankfurt FP&A Board Five Critical Roles for Building a World-Class FP&A Team

May 22, 2025

BPAI
The FP&A Trends Webinar FP&A Business Partnering and AI: A New Era

May 28, 2025

The Face-to-Face London FP&A Board: Data Management & Analytics: Unlocking FP&A Value
The Face-to-Face London FP&A Board Mastering Data in FP&A: Smarter Analytics, Better Decisions

June 5, 2025

FP&A Trends Webinar The Evolving Role of FP&A: From Number Cruncher to Strategic Advisor
The FP&A Trends Webinar Making FP&A Teams Fit for the Future

June 11, 2025

The Face-to-Face New York FP&A Board
The Face-to-Face New York FP&A Board From Insight to Impact: FP&A Business Partnering in Action

June 17, 2025

The Face-to-Face Sydney FP&A Board
The Face-to-Face Sydney FP&A Board Modern Financial Planning and Analysis (FP&A): Latest Trends and Developments

June 26, 2025

The Face-to-Face Singapore FP&A Board: Modern Financial Planning and Analysis (FP&A): Latest Trends and Developments
The Face-to-Face Singapore FP&A Board Modern Financial Planning and Analysis (FP&A): Latest Trends and Developments

July 8, 2025

AI/ML FP&A
AI/ML FP&A
Data and Analytics
Data & Analytics
FP&A Case Studies
FP&A Case Studies
FP&A Research
FP&A Research
General
General
Integrated FP&A
Integrated FP&A
People and Culture
People and Culture
Process
Process
Technology
Technology

Please register to receive the latest FP&A news, updates and tips.

info@fpa-trends.com​

              

Foot menu

  • FP&A Insights
  • FP&A Board
  • FP&A Videos

Footer countries

  • Amsterdam
  • Austin
  • Boston
  • Brisbane
  • Brussels
  • Chicago
  • Copenhagen
  • Dubai
  • Frankfurt
  • Geneva
  • Helsinki
  • Hong Kong
  • Houston
  • Kuala Lumpur
  • London Board
  • London (Circle)
  • Melbourne
  • Miami
  • Milan
  • Munich
  • New York
  • Paris
  • Perth
  • Riyadh
  • San Francisco
  • Seattle
  • Shanghai
  • Singapore
  • Stockholm
  • Sydney
  • Tokyo
  • Toronto
  • Washington D.C.
  • Zurich

Copyright © 2025 fpa-trends.com. All rights reserved.

0