Skip to main content
Home
The Online Resource for Modern FP&A Professionals
Please register to receive the latest FP&A news, updates and tips Login

Main menu

  • Home
  • FP&A Insights
    • Contributors
    • FP&A Trends Digest
    • FP&A Talks Series
    • FP&A Trends Research
  • FP&A Board
    • Amsterdam
    • Boston
    • Brisbane
    • Brussels
    • Chicago
    • Copenhagen
    • Dubai
    • Frankfurt
    • Geneva
    • Hong Kong
    • Houston
    • Kuala Lumpur
    • London Board
    • London Circle
    • Melbourne
    • New York
    • Paris
    • Perth
    • San Francisco
    • Seattle
    • Shanghai
    • Singapore
    • Stockholm
    • Sydney
    • Tokyo
    • Toronto
    • Washington D.C.
    • Zurich
  • AI/ML Committee
    • Introduction
    • Meetings
    • Members
    • Resources
  • Video Content
    • Digital FP&A Boards
    • FP&A Webinars
    • Short Videos
  • Contact Us
  • About Us
    • Ambassadors
    • Privacy Policy
    • Company Policy
    • Editorial Guidelines
    • Our Sponsors & Partners
Navigating Uncertainty with FP&A Scenario Management

Navigating Uncertainty with FP&A Scenario Management

Click here to view details and register

 

5 Steps to Succeed with a Good Data-Driven Strategy that Leverages Predictive Analytics
New
June 24, 2021

By Francesco Morini, Director - Innovation at CCH® Tagetik

FP&A Tags
FP&A Predictive Analytics
FP&A Technology
Data-Driven FP&A
FP&A Strategic Planning

analyticsAt its core, the phrase "data-driven" means acting based on what the data tells you. Organizations are increasingly adopting data-driven approaches to decision-making. This is natural, given the amount of data we now have on hand. To match the demand, software providers are touting products that claim to facilitate this metric-centric decision making. All-in-all, data-driven is now perceived as the right way to do business. If you're doing "data-driven decision making", you're doing it right. 

But are you really?

As we let the data determine more and more actions, we must keep in mind that "data-driven" doesn't necessarily mean "data accurate." Nor does it mean "data-efficient" or "data masterful." 

Indeed, I've seen data-driven strategies that run the gamut. Some were good, some were bad, and others were just ugly. This article will look into how to set up a good data-driven strategy and how to choose the best predictive analytics solution.

Data-driven strategies: The good, the bad and the ugly 

  • The good: This kind of data-driven strategy focuses on sourcing more financial and operational data and analyzing it quickly. That’s the magic that happens when you can access to a real data hub that incorporates financial data, but also granular operational data, which are the fire-starter of the revenue, cost, cash generation.
  • The bad: This kind of data-driven strategy is incomplete as it lacks vital data sources. It results in inaccurate data that becomes dangerous when used to craft strategies and make decisions. It generally happens when your financial system can sync and merge data from an old, siloed approach, but you still can't track relevant data or data that the proper granularity. E.g., Retailers who can't track hourly or day-of sales miss critical information that would inform cost-savings measures, like shift scheduling or sales generation, like in-store promotion.
  • The ugly: This kind of data-driven strategy can't get off the ground because its data is uninterpretable. Even if it could, finance would have no way to extract any value from its findings. If your financial and analysis (FP&A) system can tell you, for example, that you're going to sell more ice cream if the number of people in the city divided by the average salary of bakers in London is greater than the estimated CPI in three years. What do you do next? How do you derive a selling strategy from this accurate yet business agnostic finding that's pure math? Cool technology, but it lacks any actionable insight.

To help you determine where you land on the data-driven decision-making spectrum, I've made this handy chart to support you on your next steps.

fp&a​

How do you switch tracks to a good data-driven strategy? 

I believe the best way to look at this is to understand the path towards an ideal data-driven strategy, boosted by predictive analytics. 

The crème de la crème of data-driven strategies is predictive analytics — specifically predictive analytics with explainable predictions. (I'll explain this concept in a bit.) Predictive analytics produces precise projections that can help shape decisions, guide course corrections, and redirect resources to productive activities. 

In other words, a conscious and consistent journey towards predictive analytics will put you on the track towards — not just good — but exceptional data-driven decision making.

When executed correctly, predictive analytics has the power to leverage all kinds of data and confer predictive power on every financial process. 

 


How to choose the best predictive analytics solution to be successful? 

1. Understand the three essential pillars of predictive analytics

In the past, companies used external consultants and data scientists to build and utilize predictive functionality. The burdensome, costly nature of this approach still lingers in finance's imagination. Yet, times have changed. Although predictive technology has matured beyond recognition, there are several things that a predictive analytics solution must do:

  • Unify data: Predictive platforms must facilitate a centralized approach to data management. 
  • Connect operational and financial data: By understanding the connection and interrelations between financial results and operational actions, you can better scrutinize and adjust operational strategy towards a scenario that would produce the optimal financial results. 
  • Be real-time: Access to real-time data is critical to producing precise predictions in times of uncertainty. In-memory computing and a powerful data engine are the two technologies that ensure real-time speed so you can gauge the impacts of unexpected market events or twists and turns in the economy and quickly determine a viable strategic response.

2. Use explainable predictions

Predictions are only half the battle when it comes to making data-driven decisions. The other half? Understanding what is driving your performance and impacting most the predicted outcomes.

For example, it’s helpful to know a product line’s predicted revenue. But it’s more beneficial to understand that your marketing campaigns and discount policy are the drivers of that revenue. This way, you could invest more in what's working, less in what's not and apply your insights to neighboring initiatives. 

3. Use a suitable predictive analytics software

Leveraging a predictive solution without explainable predictions is, in my eyes, like providing a cart without a horse. It lacks a driving force. That’s why it’s important to recognize the main two types of predictive analytics software, as follows:

  • Black box software: Black box software that gives you predictions but provides no rhyme or reason. You're expected to trust the machine's predictions without understanding the correlations it's made to come to its conclusion. 
  • Glass box approach software: This software produces the predictions and spots light on the business drivers responsible for them. This is supporting your savvy data-driven decision-making process because you can take those drivers, change the strategy, and simulate or re-shape the future towards a more fruitful outcome. 

4. Don’t treat predictive analytics as a technology. Treat it as a solution

I've seen many organizations fall victim to shiny and new predictive analytics solutions that make data-driven decision-making more of an IT chore than a finance weapon. I suggest that, when you're vetting a predictive analytics solution or building your requirements for a data-driven strategy, be wary of these artificial intelligence (AI) and machine learning (ML) technology red flags:

  • Highly tech but difficult to use
  • AI/ML not integrated with FP&A tools: This leads to auditability problems and time-consuming manual processes. FP&A tools not integrated with ERP:  Usually, ERP data models aren't meant for analysis. They're meant for transactional processes. It takes a lot of work to unearth ERP data that's beneficial for planning. Also, in the ERP world, data processes are transactional and fluid which impacts the data quality of snapshots.

5. Understand that you can start where you are today

Crawl, walk, run! Don't let perfect be the enemy of progress. Even as an end goal, predictive analytics becomes a baseline for improved automation, data synthesis, and the drive to underlie more predictive technologies under more processes — so it's ok to start lean and slow with what you have. 

The point is: if you have even minimal data requirements and implement a predictive analytics software that includes explainable predictions, you'll still benefit from understanding performance drivers and automation, even if the predictions aren't 100% spot on.

Closing thoughts

We need to remember that our decisions are only as good as our data, and our data are only as good as the technology we use to understand and act on them. 

When executed according to the framework and principles I've laid out for you here, the journey to predictive itself will result in data-driven decision-making based on data-accurate, data-efficient, and data-masterful financial processes. 

To watch an FP&A Trends webinar on how to manage uncertainty with FP&A Predictive Analytics, please check out this link.

The full text is available for registered users. Please register to view the rest of the article.
  • Log In
  • or
  • Register

Related articles

Machine Learning, Artificial Intelligence
FP&A Board Connect: Predictive Analytics at Microsoft
May 1, 2020

In the first FP&A Board Connect, Takeshi Murakami, Business Manager to CEO/President at Microsoft Japan, a speaker...

Stefan Spiegel
From Descriptive to Prescriptive Analytics
June 8, 2021

In this 7-minute presentation, Stefan Spiegel, CFO at Swiss Railway Freight Logistics (SBB Cargo AG), explains...

Read more
predictive planning
2021 is the Year of Predictive Planning
February 10, 2021

This article details the main benefits and drawbacks of predictive planning. It provides recommendations on where...

Read more
Change
Power of Driver Based and Predictive FP&A
November 10, 2020

A Global FP&A Trends Webinar that was held on the 10th November 2020 focused on why...

Read more
Big data
Using Machine Learning for Revenue Predictions
September 4, 2020

‘If I had an hour to solve a problem and my life depended on the solution...

Read more
The Curious Case of Predictive Analysis – Lots of Nice Talks But Are We Adapting?
February 19, 2020

As I walk around various offices or even in social gatherings, I find many conversations about artificial...

Read more
+

Subscribe to
FP&A Trends Digest

We will regularly update you on the latest trends and developments in FP&A. Take the opportunity to have articles written by finance thought leaders delivered directly to your inbox; watch compelling webinars; connect with like-minded professionals; and become a part of our global community.

Create new account

8 Supply Chain Planning red flags

8 Supply Chain Planning red flags

Click here to view details and register

Pagination

  • ‹‹ Previous
  • August 2022
  • Next ››
Su Mo Tu We Th Fr Sa
31
1
2
3
4
5
6
 
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
 
 
 
All events for the year

Future Meetings

The FP&A Trends Webinar
The FP&A Trends Webinar FP&A Maturity Model: Achieving Intelligent Transformation
September 15, 2022
scenario management
The FP&A Trends Webinar Navigating Uncertainty with FP&A Scenario Management
September 21, 2022
Digital FP&A: Deploying AI/ML for Planning
The Digital Middle Eastern FP&A Circle Digital FP&A: Deploying AI/ML for Planning, Budgeting & Forecasting
September 26, 2022
London
The Face-to-Face London FP&A Board Why xP&A Matters: The Journey of the FP&A Function
September 28, 2022
New York FP&A Board
The Face-to-Face New York FP&A Board Moving from FP&A to Extended Planning and Analysis (xP&A)
October 4, 2022
Geneva
The Face-to-Face Geneva FP&A Board Moving from FP&A to Extended Planning and Analysis (xP&A)
November 15, 2022
Zurich FP&A Board
The Face-to-Face Zurich FP&A Board Moving from FP&A to Extended Planning and Analysis (xP&A)
November 17, 2022
Agile FP&AAI/ML FP&ABeyond BudgetingBusiness Intelligence (BI)Capital PlanningCash PlanningCollaborative FP&ACorporate Performance Management (CPM)Cost PlanningData-Driven FP&AData VisualisationDigital FP&ADriver Based PlanningExtended Planning & Analysis (xP&A)Financial Planning and AnalysisForecasting QualityFP&A AnalyticsFP&A Business EnvironmentFP&A Business PartneringFP&A Case StudiesFP&A DashboardsFP&A KPIFP&A Maturity ModelsFP&A PeopleFP&A Predictive AnalyticsFP&A RPAFP&A Scenario PlanningFP&A SkillsFP&A StorytellingFP&A Strategic PlanningFP&A Team BuildingFP&A TechnologyFP&A TransformationFP&A Trends ResearchIntegrated FP&AModelling and ForecastingPlanning and BudgetingProfitability AnalysisRisk-Adjusted PlanningRolling ForecastWhat is FP&AZero-Based Budgeting (ZBB)

Please register to receive the latest FP&A news, updates and tips.

info@fpa-trends.com​

              

Foot menu

  • FP&A Insights
  • FP&A Board
  • FP&A Videos

Footer countries

  • Amsterdam
  • Boston
  • Brisbane
  • Brussels
  • Chicago
  • Copenhagen
  • Dubai
  • Frankfurt
  • Geneva
  • Hong Kong
  • Houston
  • Kuala Lumpur
  • London Board
  • London(Circle)
  • Melbourne
  • New-York
  • Paris
  • Perth
  • San Francisco
  • Seattle
  • Shanghai
  • Singapore
  • Stockholm
  • Sydney
  • Tokyo
  • Toronto
  • Washington D.C.
  • Zurich

Copyright © 2022 fpa-trends.com. All rights reserved.

0